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Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease organ-
ized as a hierarchy similar to normal hematopoiesis. It is maintained 
and progresses by self-renewing leukemia stem cells (LSCs) that are 
usually quiescent and resistant to current chemotherapies and thus, 
contribute to leukemia relapse. Recently, more ancestral pre-leuke-
mic hematopoietic stem cells (HSCs) were identified, suggesting 
that accumulation of mutations occurs in self-renewing HSCs. The 
pre-leukemic/leukemic stem cell model proposes that a non-genetic 
mechanism in leukemic process, harmonized together with the ge-
netic model and recently identified epigenetic dysregulations, con-
tributes to leukemia heterogeneity and treatment resistance. Here we 
review the recent advances in characterization of AML LSCs, identi-
fication of pre-leukemic HSCs, and emerging concept of cell origin 
that contributes to AML relapse. These profound insights into AML 
biology have clinical importance and great implications for future de-
velopment of new anti-AML therapies.
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Introduction

Acute myeloid leukemia (AML) is a biologically, molecular-
ly, and clinically heterogeneous disease with variant clinical 
outcomes. Despite advances in treatment over recent decades, 
except acute promyelocytic leukemia (APL, M3 by FAB clas-
sification), sustained remission and long-term survival have 
not dramatically improved with more than 70% of AML pa-
tients dying of disease relapse in less than 5 years. Develop-
ment of new therapies depends on our understanding of AML 
biology and genetics. For example, fundamental discoveries of 

chromosomal translocation and molecular mutations (e.g. Flt3, 
NPM1 and epigenetic modifiers DNMT3a, TET2, IDH1/2) in 
AML not only allow clinicians subgroup patients with favora-
ble and adverse outcomes for therapeutic options and choices 
following induction treatment, but also provide opportunities 
for therapeutic targeting [1]. In parallel to the continuous effort 
to investigate the genetic abnormalities for understanding the 
pathophysiology of AML, the nature and existence of leukemia 
stem cells (LSCs) in leukemia were also identified and exten-
sively characterized in last two decades [2, 3]. LSCs sit at the 
apex of leukemia to maintain leukemia clones and contribute 
to leukemia relapse. Recent identification of pre-leukemic stem 
cells (pre-leukemic HSCs) in AML further elucidated the cell of 
origin and biological consequences of initiating events in AML. 
Investigation of genetic, epigenetic, and proteomic profiles in 
AML is summarized in other articles. This review will mainly 
focus on the key findings of AML LSC biology, pre-leukemic 
HSCs, to understand how AML is approached and progresses as 
a cellular hierarchy driven by the ancestral cells.

Characteristics of LSCs

Although for a long time scientists consider tumors may arise 
from cancer stem cells (CSCs), as multiple types of cancers 
feature normal tissue organization with heterogeneity in the 
function of malignant cells, the existence of CSCs was not 
formally proved until the 1990s. Using xenograft combined 
with fluorescence activated cell sorting to analyze different 
subpopulations of cells from AML patients, John Dick labo-
ratory first isolated AML LSCs. They demonstrate that AML 
is organized as a hierarchy originated from a primitive LSC 
with self-renewal ability to repopulate leukemia in immune-
deficient mice [4, 5]. Following the discovery of AML LSCs, 
CSCs have been found in substantial types of solid malignan-
cies including breast, colon, brain, prostate cancers, etc., prov-
ing the CSC model in the cancer field [6, 7].

Definition of LSCs

LSCs are defined by three criteria, i.e., they can 1) populate 
immune-deficient mice with the xenograft that recapitulates 
the patient disease, 2) self-renew to reproduce and sustain the 
disease by serial passage in xenograft assays at clonal cell dos-
es, and 3) re-establish leukemia heterogeneity by self-renewal 
LSCs, colony-forming progenitors and non-proliferative leu-
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kemia blasts. By this definition, LSCs are different from leu-
kemia-initiating cells which are only defined by their abilities 
to initiate leukemia but with or without self-renewal ability. 
LSCs are rare primitive cells usually enriched in CD34+38- 
population and share multiple properties with normal HSCs: 
CD34+38- immunophenotype, the capacity of self-renewal, 
cell-cycle quiescence, and requirement of microenvironment 
(stem cell niche). However, the origin of LSCs is not only 
primitive HSCs as LSCs are also present in other populations 
based on CD34 and CD38 expression [8]. Studies in mouse 
MLL-AF9 leukemia suggest LSCs can originate either from 
HSCs or from myeloid progenitors, with different disease be-
haviors depending on cell context [9-11].

Quiescence, self-renewal and clonal evolution of LSCs

While LSCs share similar properties with normal HSC coun-
terparts making them difficult to be eradicated from patients, 
substantial investigations have characterized the properties 
specific for LSCs (Fig. 1). LSC compartments, similar to 
other CSCs, are heterogeneous at self-renewal potential with 
enhanced self-renewal ability and evolutional properties fol-
lowing treatment or in vivo passages [12, 13]. Minor dormant 
LSC clones evolve and fluctuate, and become dominant clones 
to contribute to leukemia progression and relapse. MicroR-
NA-126 is one of the important regulators for LSC functions 
as Lechman et al showed that through targeting the PI3K/
AKT/MTOR signaling pathway, microRNA-126 preserved 

quiescence, increased self-renewal and promoted chemo-re-
sistance of LSCs. Dorrance et al showed that LSCs can be tar-
geted in vivo using antagomiR-126 nanoparticles, resulting in 
LSC reduction [14]. Id2/E-protein axis was shown as another 
key LSC regulator to orchestrate mouse LSC self-renewal and 
differentiation for initiation and maintenance of MLL-rear-
ranged AML [15]. Patients with MLL-rearranged AML who 
had higher Id2 gene expression had better survival than those 
with lower Id2 expression. In contrast, overexpression of Id2 
expanded normal human HSCs, and reduction of Id2 expres-
sion induced lymphoid lineage priming, suggesting that Id2 
plays a converse role in normal HSCs and LSCs [16].

LSC cell-surface markers

During leukemogenesis LSCs aberrantly express certain cell-
surface markers, phenotypically distinguished from HSCs. 
The first immunophenotype found for LSCs is the production 
of interleukin-3 receptor α (CD123) antigen, which is highly 
expressed in both leukemic blasts and CD34+38- LSC popula-
tion. In contrast, CD123 is minimally expressed in the normal 
HSC population from adult bone marrow, making Cd123 a 
unique and interesting target for eradicating LSCs [17]. Mul-
tiple anti-CD123 antibody-based strategies have been devel-
oped, which include modified monoclonal antibodies, bispe-
cific antibodies or conjugates of anti-CD123 antibody, toxins 
or electron-emitting radioisotope, and the creation of chimeric 
antigen receptor (CAR) modified T cells [18-22].

Figure 1. Properties of LSCs. LSCs have multiple specific properties that are important for LSCs to maintain leukemia clones and 
contribute to leukemia progression and relapse. These properties are also important for identification and targeting of LSCs as 
discussed in the article. The names in the brackets under each property are the example characteristics of LSCs.
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Other identified LSC cell-surface markers such as TIM3, 
C96, CLL-1, CD25, CD32 and CD47 [20-25], also provide 
interesting targets for eliminating LSCs. Increased CD47 ex-
pression on LSCs and other cancer CSCs enhances its binding 
to the receptor Sirpa on macrophages and induces innate im-
mune tolerance. Disruption of CD47-Sirpa interaction induces 
macrophage-mediated phagocytosis of LSCs and other CSCs 
[25, 26]. The identification of LSC-specific antigens provides 
promising targets for developing antibody-based immunother-
apies against LSCs, although the success of immunotherapies 
remains to be determined in clinical trials.

Microenvironment of LSCs

LSCs reside in endosteal microenvironment to maintain 
stemness, quiescence and resistance to chemotherapy. Using 
an antibody targeting adhesion molecule CD44 on LSCs, Jin et 
al demonstrated that LSCs require interactions with supportive 
microenvironment for self-renewal and proliferation [27]. This 
study, in parallel with a similar observation in CML LSCs, pro-
vided clear evidence that disruption of the supportive compo-
nent of LSC niche is a new avenue to eliminate LSCs [28]. In 
a mouse study, gonadal adipose tissue was observed as an al-
ternative niche for fatty acid transporter CD36+ LSCs to evade 
chemotherapy [29]. However, a recent study showed that AML 
cells compromised adipocyte bone marrow niche and leuke-
mia growth can be repressed through therapeutically induced 
BM adipogenesis [30]. Collectively, these findings and other 
observations [31] have elucidated the importance of stem cell 
niche for LSC function, providing new means for develop-
ing novel therapies to target LSC stemness at the root through 
modulating the LSC-niche interaction.

Genetic and epigenetic dysregulations in LSCs

By genetic models, genetic lesions that drive carcinogenesis 
for continuous cancer growth, including substantial chromo-
somal translocations and gene mutations have been found in 
AML cases and in LSCs [32, 33]. While genetic changes and 
their roles in leukemic process are well documented in AML, 
LSCs also create LSC-specific transcription-factor-driven 
gene expression programs. Multiple intrinsic signaling path-
ways associated with stem cells such as HOX genes, Wnt/β-
catenin, Hh pathways and inactivation of p53 tumor-suppres-
sor pathways have been found to be critical for LSC survival 
and proliferation [34, 35].

In addition to genetic abnormalities extensively investigat-
ed in AML and LSCs, recently numerous studies have revealed 
the important role of epigenetic dysregulations in AML and 
LSCs. Most of driver mutations found in early stages of leuke-
mogenesis are genes associated with epigenetic regulations in-
cluding DNMT3A and TET2 [33, 36, 37]. An LSC DNA meth-
ylation signature derived from xenograft was shown largely 
mutation independent and associated with poor prognosis [38]. 
A recent study by Cimmino et al showed that genetic resto-
ration of TET2 function or treatment with vitamin C blocked 

aberrant self-renewal of LSC in mouse TET2-deficient leuke-
mia and suppressed leukemia progression [39]. Lysine meth-
yltransferase DOT1L causes aberrant H3K79 methylation in 
MLL-rearranged leukemia. Inhibition of DOT1L selectively 
impairs LSCs with very limited side effects on normal hemat-
opoiesis [40]. Lysing demethylase LSD1 is highly expressed 
in patients with AML and other cancers [41]. Inhibition of 
LSD1 demethylase reactivates the all-trans-retinoic acid dif-
ferentiation pathways in AML, resulting in the regression of 
AML growth in xenograft with impairment of repopulating 
secondary mice [42]. Collectively, these studies demonstrate 
that both major areas of epigenetics, DNA methylation and 
histone modification are functionally involved in LSC func-
tion for leukemia development and progression.

Clinical Relevance of LSCs

LSCs are mostly defined in experimental xenograft assays 
based on their capacities of generating and maintaining malig-
nant clones in mice. Although some studies showed LSCs may 
contribute to failure of treatment, metastasis and poor survival, 
for example, the frequency of putative AML LSCs (CD34+38-

) has a strong prognostic impact on patients’ survival but the 
neoplastic population (CD34+38+ and CD34-) shows no prog-
nostic impact [43, 44], the clinical relevance and importance of 
LSC concept has long been questioned. Using gene expression 
microarray analysis data generated from functionally validated 
LSC population of AML samples in xenograft assays, Eppert 
et al created an LSC signature that shares a core transcrip-
tional program with normal HSCs and is a highly significant 
independent predictor of patient survival [8]. Patients with 
LSC gene expression signature have poorer prognosis than 
those without LSC profiles. This study provides the first clear 
evidence that the LSCs identified using the xenograft mouse 
model for human AML are clinically relevant. This was further 
confirmed by gene and epigenetic expression profiles gener-
ated from different groups [45, 46]. To develop a better predic-
tive biomarker for identification of AML patients with high 
risk, Ng et al generated a list of genes related to stemness from 
functionally defined LSCs using the same strategy Eppert et al 
adopted but with a larger number of samples [47]. An optimal 
17-gene LSC score (LSC17) was further generated from the 
list of the genes through sparse regression analysis against sur-
vival in a large training cohort. The LSC17 score was highly 
prognostic and predictive of initial therapy response/resistance 
to current treatments including allogeneic stem cell transplan-
tation. These studies demonstrate that the LSC model in AML 
is not only clinical relevant but also important for clinicians to 
better determine the prognostic risk and evaluate novel strate-
gies to improve the survival of patients with high risks.

Pre-Leukemic HSCs in AML

Like other malignancies AML is also considered a clonal dis-
ease growing from a single stem/progenitor cell that has se-
quential acquisition of fewer but certain genetic mutations 
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than solid tumors [48, 49]. This stepwise evolutional leuke-
mogenesis generates inter-tumor genetic diversity and cellular 
heterogeneity consisting of LSCs with variable self-renewal 
capacities, committed colony-forming AML progenitors, and 
non-proliferative blasts. Recently, a more ancestral pre-leuke-
mic HSC was identified as the new source and compartment of 
AML heterogeneity [36, 50, 51]. Pre-leukemic HSCs must be 
defined as a condition that a HSC has some but not all leuke-
mia-specific mutations that cause clonal hematopoietic expan-
sion without disease, but are associated with progression to 
AML when additional leukemia-specific mutations acquired. 
The existence of pre-leukemic HSCs was indicated by clonal 
analysis over three decades ago [52, 53] and was extensively 
studied in pediatric twin pairs with concordant and discord-
ant AML, evidenced by the discovery of the same genetic al-
terations in the twin patients or in the normal differentiated 
cells of the non-leukemia twin [54, 55]. Yasuda et al reported 
a donor-derived leukemia in patients after allo-transplant of 
HSCs from a HLA-matched sibling but the donor whose blood 
cells carried IDH2 and DNMT3A mutations remained free of 
leukemia 10 years after his donation, suggesting the presence 
of subclinical pre-leukemic hematopoiesis [56]. A recent study 
by Slush et al directly identified pre-leukemic HSCs in AML at 
diagnosis. When large-scale deep sequencing was performed 
on highly purified HSC progenitors and mature cells from 
AML patients, HSCs bearing DNMT3A mutation resulted in 
competitive multilineage repopulation advantage over non-
mutated HSCs in xenograft. DNMT3A mutations were found 
present in stem/progenitor cells at diagnosis and remission, 
with increased allele frequency in late remission suggesting 
that pre-leukemic HSCs are chemo-resistant. In contrast, both 

DNMT3A and NPM1 mutations were widely found in all kinds 
of cells from relapse, demonstrating that DNMT3A mutation 
occurs earlier in HSCs, leading to clonal expansion of pre-leu-
kemia before full leukemia developed by additional leukemia-
specific NPM1 mutation [36]. Pre-leukemic HSCs were also 
found in patients with other mutations such as TET2, IDH2, 
IKZF1, and ASXL1 followed by secondary leukemia-specific 
mutations like NPM1, FLT3ITD, JAK2 and NRAS for the de-
velopment of full leukemia in patients and in relapse [50, 51]. 
Collectively, the identification of pre-leukemic HSCs has elu-
cidated both the cell of origin for mutations and the order of 
mutation acquisition in leukemogenesis toward development 
of leukemia (Fig. 2). Studies that examined the important role 
of pre-leukemic HSCs in leukemia and relapse provide broad 
clinical implications. In addition to LSCs, the more ancestral 
pre-leukemic HSCs in patients should also be monitored and 
targeted for the prevention of leukemia relapse.

Cell Origin of AML Relapse

Despite achieving remission, majority of AML patients die 
from relapse. It used to be generally accepted that the mecha-
nism for leukemia relapse was that leukemic cells acquire 
drug-resistant mutations or alterations, either as a consequence 
of the mutagenic effect of chemo-drugs or due to the intrin-
sic instinct of leukemia cells to generate genetic alterations 
for drug resistance [57, 58]. However, drug-resistant leu-
kemia cells are recently considered to pre-exist and survive 
from chemotherapy as pre-leukemic HSCs, LSCs and their 
associated progenitors in the heterogeneous AML respond 

Figure 2. Simplified model of multistep leukemogenesis and leukemia heterogeneity. Acquisition of primary mutations mainly 
DNMT3A, TET2, IDH1/2 and others modifies NDA methylation status in normal HSCs, resulting in enhanced self-renewal and 
clonal hematopoiesis (pre-leukemic HSCs). Pre-leukemic HSCs with the primary mutations are responsible only for clonal hemat-
opoiesis or early stage of leukemic process which is not irreversible to leukemia transformation. Acquisition of secondary muta-
tions like FLT3-ITD and JAK2 provides pre-leukemic HSCs the ability of proliferation. Mutated HSCs with both self-renewal and 
proliferation abilities are considered LSCs that create leukemia clones, produce daughter progenitors and blasts cells. Together 
distinct types of cells form the complex leukemia heterogeneity. Differentiation programs should also be affected by the genetic 
alterations in LSCs for accumulation of immature blasts in frank leukemia.
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differently to chemotherapies. Studies on dynamics of geneti-
cally or lentivirus marked LSCs and CSCs showed that not 
all LSCs or CSCs are equal in their tumor propagation ability 
as functional diversity among LSCs and CSCs were detected. 
Some minor undetectable drug-resistant cells are selected and 
evolved by chemotherapy and as a consequence, expanded to 
become dominant clones [12, 13]. Similar to LSCs, pre-leu-
kemic HSCs are also putative reservoirs for leukemia relapse 
because of their stemness properties of dormancy, self-renewal 
and capacity of evolution following chemotherapy with in-
creased frequency in remission and relapse [36]. Nevertheless, 
it remains unclear how AML patients in remission relapse and 
whether pre-leukemic HSCs and LSCs directly contribute to 
relapse. Recently Shlush et al showed the complexity of leu-
kemia progression between individual patients. They found 
that leukemia progresses to relapse by two different therapy-
resistant cell types with genetic and immunophenotypic dis-
similarities [59]. Relapse originates in some cases from rare 
LSCs that arise from pre-leukemic HSCs present in primitive 

HSCs/progenitors at diagnosis and repopulate in NSG mice. In 
another instance, relapse variants detected by variant allele fre-
quency are not observed in any primitive HSCs/progenitors at 
diagnosis or in repopulated NSG mice. Those relapse variants 
present in CD33+ leukemia blasts at diagnosis demonstrate 
that this type of disease relapse originates from phenotypi-
cally more committed leukemia cells. Investigations of gene 
expression profile exposed both groups of disease require stem 
cell properties for relapse, either LSCs directly giving rise to 
relapse or stemness transcriptional programs being retained or 
regained in more matured leukemia cells. In summary, iden-
tification of pre-leukemic HSCs by Shlush et al sheds light 
on the mechanisms underlying AML progression and relapse 
(summarized in Fig. 3).

While the study by Slush et al first elucidates cell origin of 
relapse and provides key insight into leukemia pathophysiology, 
progression of leukemia to relapse could be more complicated 
than what we have discovered. In their study, not all patients fell 
into these two patterns of relapse, indicating that either a more 

Figure 3. Speculated mechanism of leukemia relapse. Relapse can happen at any time in AML patients with complete remission 
(CR), from as early as a couple of months to a few or up to 5 years since CR is achieved. Proliferation of different types of residual 
cells in a patient’s BM may contribute to relapse. To summarize the studies by Shlush et al, relapse could arise from a rare pre-
leukemic HSC (e.g. DNMT3A) that needs to acquire additional mutations (e.g. NPM1) to become LSCs and result in relapse (a), 
or rare dormant LSCs that are resistant to chemotherapies proliferate for leukemia relapse (b). Relapse from rare pre-leukemic 
HSCs or LSCs takes longer time than from more committed progenitor cells (c). Not all the patients tested in the studies by 
Shlush et al fit into the categories of cell of origin for relapse, indicating other mechanisms may be also involved in relapse (d).



Articles © The authors   |   Journal compilation © Cell Mol Med Res and Elmer Press Inc™   |   www.thecmmr.org 17

Jin et al Cell Mol Med Res. 2023;1(1):12-19

sensitive sequencing technology needs to be adopted for detec-
tion of rarer relapse variants, or other types of cells or genetic 
events are responsible for leukemia relapse (Fig. 3). Also, the 
phenomenon of relapse from committed mature leukemic cells 
suggests that either founder dominant AML clones are incom-
pletely eradicated by inductive therapies, or they inherit chemo-
resistance from their ancestral stem cells at diagnosis.

Conclusions

Like other solid cancers, AML also results from multistep 
pathogenesis, related to cytogenetic abnormalities, point mu-
tations, aberrant gene expression, and epigenetic dysregula-
tions. Numerous studies on AML LSC biology have indicated 
that non-genetic mechanisms together with genetic and epige-
netic alterations are involved in leukemogenesis and leukemia 
progression. This review mainly summarized recent advances 
of studies on LSC properties to elucidate the non-genetic ma-
chinery and their clinical implications. Identification of more 
ancestral pre-leukemic HSCs provides key insight into the cell 
origin of leukemic initiation and the order of mutation acquisi-
tion during leukemia development. Genes that are first mu-
tated are usually the ones (e.g. DNMT3A, TET2, IDH1/2, and 
ASXL1) involved in epigenetic regulation or cellular metabo-
lism in HSCs causing defect in normal hematopoiesis and clon-
al evolution. Additional late mutations (e.g. FLT3-ITD, NPM1, 
JAK2, and NRAS) are more leukemia specific and usually con-
tribute to leukemic cell growth through constitutive activation 
of signaling pathways for development of frank leukemia. The 
recognition of persistence of LSCs and pre-leukemic HSCs in 
leukemia development and remission, and their contribution to 
relapse will prompt the development of new therapies for the 
eradication of these ancestral malignant cells. Multiple inhibi-
tors have been produced to target those mutations and are in 
the process of clinical trial but impressive efficacies like the 
success of imatinib in chronic myeloid leukemia have not yet 
been achieved. Development of new therapeutic approaches 
relies on deeper insight into the pre-leukemic/leukemic stem 
cell properties. Recent findings of metabolic abnormalities in 
LSCs (e.g. IDH1/2 mutation-induced aberrant enzymatic ac-
tivity and increased mitochondrial mass and fatty-acid oxida-
tion) should offer a new promising avenue to design therapeu-
tic strategies [60-63]. Individualized disease profiles focusing 
on characterization and monitoring of LSCs, pre-leukemic 
HSCs and other biomarkers like LSC17 for patients with AML 
should be generated so that clinicians can choose the optimal 
therapeutic options and novel strategies for the management 
of relapse.
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