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Abstract

Cancer stem cells (CSCs) known as tumorigenic cells are biologi-
cally distinct from diverse subpopulations. Cancer cell heterogene-
ity readily leads to development of drug resistance and tolerance to 
treatment. CSC hypothesis has resulted in incredible impact on the 
understanding and insight into tumor biology. More importantly, ad-
vances in molecular perspectives have achieved in the recent decades 
although many aspects of this hypothesis remain speculative and are 
still evolving. CSC has been considered a new cellular target for an-
ticancer drug discovery. Along with identification of different CSC 
markers such as CD133, CD24, CD44, CD90 and signaling pathways 
such as Wnt/β-catenin, hedgehog and so on, different kinds of thera-
peutic approaches have been developed to work on these molecular 
targets, resulting in selective inhibition of CSC functions including 
self-renewal and differentiation. Most recent studies demonstrated 
that CR1 expression in colon CSC can promote the stem cell clone 
formation, CCR7 promotes breast CSC growth, TP53 splice can 
enhance the pluripotency of CSC through the positive regulation of 
Sox2, Oct3/4 and Nanog and other key factors, to increase the poten-
tial risk of cancer recurrence, and an exciting finding is that carbon 
nanomaterials may be used as a CSC sniper. Selectively targeting 
CSC has shown promising perspectives and may open a new venue 
for the treatment of cancer.
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Introduction

Tumor-initiating cells (TICs), also known as cancer stem cells 
(CSCs), are tumorigenic cells that are biologically distinct 
from diverse subpopulations [1, 2]. Cancer cell heterogeneity 
readily leads to development of drug resistance and tolerance 
to treatment [3, 4]. CSC hypothesis has resulted in incredible 

impact on the understanding and insight into tumor biology. 
CSCs have been identified in a wide variety of human tumors 
in the recent decades [5-9]. Within heterogeneous cancer cell 
population of the tumors, CSCs are tumorigenic cells and are 
biologically distinct from other subpopulations. CSCs are 
characterized by self-renewal and differentiation which drive 
tumor progression [5, 10-12].

The hypothesis of CSC includes stochastic model and hi-
erarchy model. Stochastic cell model proposed that each single 
tumor cell is tumorigenic. All tumor cells are equipotent and 
can self-renew or differentiate so as to maintain the property 
of tumor heterogeneity, resulting in diverse cells in phenotypes 
within a tumor [13, 14].

While the concept of CSC model (or hierarchy cell model) 
proposes that a tumor is a heterogeneous population of mu-
tant cells. A tumor may have various phenotypes of CSC. Cer-
tain type of CSC plays critical role in maintaining successful 
adaptation to tumor environment, which makes it possible to 
develop CSC-specific treatment regimens by therapeutic inter-
vention [15, 16].

Tumor hierarchy model has been considered as a funda-
mental concept in tumor biology and promises a new cellular 
target for anticancer drug discovery. Although the CSC hy-
pothesis was first proposed decades ago, many aspects of this 
hypothesis remain speculative and are still evolving [17, 18].

The clonal evolution model, which occurs in both stochas-
tic model and hierarchy model, postulates that mutant tumor 
cells with a growth advantage outproliferate others. Cells in 
the dominant population have a similar potential for initiating 
tumor growth. Dick et al proposed that the genetics and CSC 
models can be harmonized by genetic diversity and non-genet-
ic influences in contributing to tumor heterogeneity. Therefore, 
a better interpretation of previous observation may be offered 
through integrating CSC and cancer genetics [16].

CSCs may be the cause of drug resistance and tolerance 
to treatment

Considerable evidence has indicated that CSCs have a strong 
ability to transform thus often escape the killing of therapies, 
which is now the major problem in the field of cancer treatment.

Development of drug resistance limits the efficacy of 
treatment, partly due to cancer cell heterogeneity. Evidence 
indicates that CSCs are usually more resistant to the conven-
tional therapies leading to clinical relapse [19].

CD133, a putative stem cell marker in malignant brain 
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tumors, enhances multidrug resistant gene 1 (MDR1) expres-
sion following chemotherapy in adult malignant glioblasto-
mas. In this study they found that CD133 and MDR1 were 
co-expressed and their expression was elevated in recurrent 
glioblastoma from patients who received chemotherapy. PI3K-
Akt-NF-κB signaling mediator expression was also elevated in 
the chemotherapy-resistant patients. Suppressing CD133 ex-
pression decreased levels of PI3K-Akt-NF-κB and MDR1, but 
improved chemosensitivity [20].

Secreted Wnt signals are associated with maintenance of 
stem cell property. Mouse and human lung adenocarcinomas 
display hierarchical features with two distinct subpopulations 
either with high or low Wnt signaling activity. The Wnt re-
sponder cells showed increased tumor propagation ability with 
CSC features. Wnt inhibitors reduced tumor growth and mark-
edly decreased the proliferative potential of lung cancer cells 
in mice, indicating that strategies for disrupting pathways that 
maintain CSC phenotypes can translate into effective anti-can-
cer therapies [21].

For taxanes, a mainstay of treatment for breast cancer, 
drug resistance easily occurs. Breast cancer patient-derived 
xenografts were used to study the underlying mechanisms. 
They identified a CD49f+ chemoresistant population with tu-
mor-initiating ability which expands during the acquisition of 
drug resistance. The resistant CD49f+ population shrinks and 
taxane sensitivity can be restored in the absence of drug treat-
ment. CD49f+ enriched cells were chemoresistant with TIC 
properties, revealing the potential mechanism of acquired re-
sistance to docetaxel in triple-negative breast cancer [22].

Based on the current studies, since CSC can not differenti-
ate into other special cell types, it would be feasible to develop 
new strategies to selectively kill CSC, thereby inhibiting the 
development of cancer. More importantly, inhibition of CSC 
would be able to improve efficacy of treatment by enhancing 
the sensitivity to chemotherapeutic drugs.

Promising candidate biomarkers to identify CSCs

Nowadays it has been widely accepted that CSC may be re-
sistant to conventional cancer therapies, especially chemo-
therapy and radiotherapy [23]. Much effort is being made to 
identify therapeutic strategies that could target CSC. This re-
view attempts to summarize recent advances in the CSC re-

search, casting a light of hope on the potential approaches for 
anticancer drug development (Table 1) [8, 24-38]. Based on 
the above CSC biomarkers or pathways, novel approaches tar-
geting CSC have been developed (Fig. 1). Clinical trial “The 
immunotherapy of nasopharyngeal cancer using cancer stem 
cell vaccine (NCT02115958)” was sponsored by Fuda Cancer 
Hospital, Guangzhou, China and collaborated with University 
of Michigan, MI, USA. They examined the vaccination effects 
produced by enriched CSC and found that CSC vaccination 
was immunogenic and more effective as an antigen source 
than bulk tumor cells in inducing antitumor immunity (https://
clinicaltrials.gov).

New Emerging Therapeutic Approaches to 
Targeting CSC

The most recent studies demonstrated that CR1 expression in 
colon CSC can promote the stem cell clone formation, CCR7 
promotes breast CSC growth, TP53 splice can enhance the 
pluripotency of CSC through the positive regulation of Sox2, 
Oct3/4 and Nanog and other key factors, to increase the poten-
tial risk of cancer recurrence, and an exciting finding is that 
carbon nanomaterials may be used as a CSC sniper [39-42]. 
Current achievements indicate that CSC may open a promising 
venue for the treatment of cancer.

Cripto-1 regulates colon CSC function

Recently, a new study from Italian group found that embryonic 
protein Cripto-1 (CR1) expression in colon CSC can promote 
the stem cell clone formation, showing that CR1 may promote 
colon cancer recurrence by promoting CSC growth [39].

Stemness is a dynamic change that may be present in both 
normal and tumor cells. Embryonic protein CR1 can be ex-
pressed in normal stem cells at the bottom of the colon’s crypts 
and also in CSC of colon cancer tissues. CR1-positive cell sub-
sets were found by sorting the tumor tissue of colon cancer 
patients, and these cells had stronger clonal ability to express 
stem cell-related genes at the same time.

CR1 expression in tumor cells may change over time and 
is regulated by intracellular proteins, cell surface proteins 

Table 1.  A Few Examples of Molecules Are Used as Potential Markers to Identify Cancer Stem Cells

Molecule/Pathway Function Cancer References
CD133 (prominin-1) Act as an organizer of cell membrane topology, CSC marker Leukemia, breast [24, 25]
CD24 Angiogenesis Skin, salivary gland [26-28]
CD44 (Pgp-1) CSC marker, differentiation, migration, angiogenesis Breast, lung [27, 29]
CD90 (Thy-1) CSC marker, stemness Liver, lung [8, 30]
Hedgehog CSC pathway, self-renewal Pancreas, lung [31, 32]
Wnt/β-catenin CSC pathway, self-renewal, stemness Colorectum, prostate [33, 34]
Notch CSC pathway Breast [35, 36]
Muc-1 CSC pathway Breast [37, 38]
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and secretory proteins, and these regulatory correlations are 
associated with the clonal formation ability of CR1-positive 
subgroups. Inhibition of CR1 expression in vitro was able to 
induce CSC growth. This inhibition was accompanied by a 
down-regulation of the Src/Akt signaling pathway, and it was 
also demonstrated by in vivo experiments that silencing CR1 
inhibited CSC-driven tumor growth and reduced the number 
of CSC. The use of an inducible expression system to silence 
CR1 in established tumor implants can inhibit the growth of 
CSC, and this inhibitory effect is present in both primary and 
metastatic tumors, demonstrating that CR1 is important for 
CSC growth. These results suggest that CR1 is a novel dynam-
ic factor for regulating the function of colon CSC, and may 
become an important target for the treatment of colon cancer, 
inhibiting CSC function and preventing cancer recurrence.

Chemokine receptor CCR7 promotes breast CSC growth

An Australia group recently reported their latest findings that 
chemokine receptor CCR7 regulates the growth of CSC in 
breast cancer, suggesting that CCR7 may be a potential target 
for cancer treatment [40].

CCR7 is widely detected in breast cancer pathology. Al-
though recent studies have shown that high levels of CCR7 
expression are associated with advanced tumor grade and poor 
prognosis, in vivo studies on their specific function in breast 
cancer and the molecular mechanisms involved in breast can-
cer are still very limited.

To address these issues, they used CCR7-deficient breast 
cancer mouse model and found that CCR7 deletion resulted in 
a significant lag in breast cancer and a significant decrease in 
tumor burden. Through mechanism studies, it was found that 

in human and mouse tumor cells, CCR7 can function by regu-
lating the stemness of CSC. In vivo experiments showed that 
inhibition of CCR7 activity by gene deletion or drug blockade 
can significantly reduce the number of primary breast cancer 
cells in mice, which provides a reasonable mechanism for 
CCR7 to promote tumor growth.

These results revealed that the oncogene properties of CCR7 
in mammary epithelial tumors provide a potential target for the 
development of therapeutic intervention for targeting CSC.

P53 subtype promotes CSC potential

A new study of French scientists recently found that a TP53 
splice can enhance the pluripotency of CSC through the posi-
tive regulation of Sox2, Oct3/4 and Nanog and other key fac-
tors, to increase the potential risk of cancer recurrence [41, 43].

In this study, they found that a TP53 splice could en-
hance the stemness in breast cancer cells MCF-7 and reduce 
the stemness after deletion of such splice. This TP53 splice 
can stimulate the expression of the pluripotent factors Sox2, 
Oct3/4 and Nanog. At the same time, in other highly metastatic 
breast cancer cells, invasive and CSC potential enhancement 
and TP53 splice expression increased, and the expression of 
Sox2, Oct3/4 and Nanog is also subject to positive regulation 
of TP53 splice. The use of anti-tumor drug etoposide to treat 
MCF-7 cells can promote the CSC formation and enhance the 
expression of Sox2, Oct3/4 and Nanog in TP53 splice-depend-
ent, increasing the potential risk of cancer recurrence.

TP53 was used to be thought mainly as a tumor suppres-
sor; however, this study shows that a splice of TP53 can pro-
mote the potential of CSC, suggesting that TP53 splice may 
also play a role of oncogene.

Figure 1. Tumor initiation models. Tumor-initiating cells/cancer stem cells (TICs/CSCs) may be the critical target to eradicate tumor. 
The origin of CSC is unknown yet. It might come from stem cells or somatic cells. CSCs known as tumorigenic cells are biologically 
distinct from diverse subpopulations. Cancer cell heterogeneity often leads to resistance to chemoradiation treatment. Drug-re-
sistant cells contain CSC enrichment. Novel approaches targeting CSC have been developed either targeting the surface molecules 
or blocking the pathways. Selectively targeting CSC has shown promising and may open a new venue for the treatment of cancer. 
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Nanoparticles target and kill CSCs that drive tumor growth

A Chinese group found that metallofullerenol nanomaterial 
Gd@C82(OH)22 can be used as a drug delivery agent, and ef-
fectively inhibit the self-renewal ability of CSC in breast cancer 
with triple-negative biomarkers. This nanoparticle may block 
epithelial-to-mesenchymal transition (EMT) through regulat-
ing tumor microenvironment to achieve efficient removal of 
CSC, thereby preventing tumor initiation and metastasis.

CSC is the leading cause of cancer recurrence and me-
tastasis, because CSC is more resistant to chemotherapy and 
radiotherapy. Identifying new drugs that could effectively tar-
get “sniper” CSC will be expected to become a new hope for 
cancer.

In this study, nanoparticles were used in the tumor surface 
of the oxygen-rich microenvironment (rich tumor neovascu-
larization) and deep tumor hypoxic microenvironment through 
transition from deprotonation to protonation, to achieve more 
effective breast cancer treatment by targeting the “sniper” CSC.

High toxicity of CSC drugs found so far is a key issue that 
limits its clinical application. In contrast, in vitro and in vivo 
experiments have shown that such carbon nanomaterials have 
no observable toxicity. It thus becomes a non-toxic nanocom-
posite that can directly target CSC.

CSC themselves are highly heterogeneous, and similar 
with tumor cells. Current anti-CSC drugs often can partially 
attenuate at individual targets rather than effectively kill CSC, 
but also increase the toxicity to normal stem cells. Due to 
the unique physicochemical properties of the fullerene nano-
structures, especially the high degree of controllability of the 
surface of the sphere structure, it is non-toxic to normal stem 
cells. There are several systemic reviews that were recently 
published, specifically on targeting CSC by using the nano-
particles [44, 45]. Therefore, it would be more practical for the 
clinical application [42].

Concluding Remarks

CSC theory provides a novel direction and perspective to 
understand tumor origin, the diagnosis, and new drug devel-
opment for cancer therapy. Recently, the subject of CSC is 
frequently published in the high impact journals, showing its 
promising value of clinical application. Development of drugs 
that are selectively targeting CSC would be a potential ap-
proach to the treatment of cancer patients.
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